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The steady wave process in a piezoceramic space with tunnel cavity-openings under plane deformation conditions in a plane 
parallel to the axis of symmetry of the material is investigated• The corresponding two-dimensional boundary-value problem of 
electroelasticity is reduced to a system of three singular integral equations of the second kind. The results of a numerical 
implementation of the algorithm illustrate the effect of the configuration of the openings, the type and frequency of the excitation 

. and the effect of the connectedness of the mechanical and electric fields on the stress concentration. © 1998 Elsevier Science 
Ltd. All rights reserved. 

Plane and antiplane problems of pulsed and harmonic excitation of piezoelectric media with tunnel 
cracks or cavities have been investigated, for example, in [1-3]. The system of boundary integral equations 
of plane problems of electroelasticity for the steady oscillations of solids with smooth boundaries is 
formulated in [4]. 

1. We will consider, with respect to Cartesian rectilinear axes x~, x2, x3, a piezoceramic medium, 
weakened by tunnel cavities along the x2 axis, the transverse sections of which are bounded by the 
contours Fm(m = 1, 2 . . . . .  n). We will agree to assume that thex3 axis coincides with the direction of 
the electric field lines of preliminary polarization of the ceramics. We will assume that the surfaces of 
the cavities are free from mechanical loads, and that plane monochromatic waves of the appropriate 
types are incident on them from infinity. 

We will assume that the curvatures of the contours Fm satisfy a H61der conditions [5] on F = U I'm 
and, in addition, NFm = ~. 

In this formulation, a state of plane deformation in XlOX3 occurs in a medium with cavities• The 
complete system of equations has the following form [6]: the equations of motion of the medium 

~k0-it =p~2uil~t2,  ~t = ~ l ~ x t ,  i , k = l , 3  (1.1) 

the equations of electrostatics 

and the material equations 

div  D = O, E = - g r a d  ¢p (1.2) 

Oil  = C I I~IUl + ¢13¢~3U3 - -  e31E3, 

O'33 --. Cl3~lUl ae C33~3u3 - e33E 3 

/91 = ellEi +els(a~u3 +a3ul), 

O"!3 ---- C44 (~IU3 4- ~3Ul) -- e l s e  I 

D 3 = E33E3 + e31~tu I + e33~3u 3 

(1.31 

Here ffik, ui, Ei, Di and q) and the stress tensor, ~ e  displacements, the electric field strength, the electric 
displacement and the electric potential, cij = ~ are the moduli of elasticity, measured for a constant 
electric field, ej. = e~. are the pernuttlvaUes, determined for constant deformation, e~j are the Dezoelectnc 
moduh and p ts the density of the material. 

Assuming 

e -i~t uj = Re(Uie-~), oj~ = R (T~ke ), 

q~ = R e ( ~ e - ~ )  
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Fig. 1. 

we write the system of equations (1.1)-(1.3) in matrix form in terms of the amplitudes of the 
displacements and the electric potential 

Ilzl, z~2 u~ 2) u~3)l IoN 
u?>l= z~2 L2311U.~ (1.4) 

where the differential operators Li: are defined as follows: 

z~ = g 10~ + c~0~ + po) 2, /~2 = L2~ = (c,3 + c~)~103 

/~.~ = ~ l  = (e3~ + e t s ) 0 1 ~ 3 ,  /a2 2 2 = C44~ I -I-' C3303 3 + pf.,O 2 

= 2 2 /-'23 =/'32 = ej5~)l 2 +e33~332, /-33 -eHi)l -~:33c13, L//= L/i 

It is necessary to supplement system (1.4) with the mechanical and electrical boundary conditions 
on the cavity surfaces. Assuming that the cavity surfaces border on a vacuum (air), we can assume 
[6] 

Dn=Dlcos~+D3sinw=O o n  F m (1.5) 

(~ is the angle between the normal to the contour F and the Oxl axis (Fig. 1)). 

2. To construct the correct integral representations of the amplitudes of the displacements and the 
potential, for the purpose of reducing the initial boundary-value problem to a system of integral 
equations, we will use the matrix of the fundamental solutions of system (1.4) [4], which, in different 
notation, we will represent in the form 

Wj(k)(r,l~,o~)= 2~- '~ JoekR* ~ {~=~ ~(~)+(O v)+8~83~,ota(o)} dot 
A(o0 

(2.1) 

W=(t)=U~ t ' ,  W~k)=U3 (k), W3(t)=@(t), k=1,2,3 

Here 

• ( x )  = ~ • 'x - cos x c i  x - s in x si x ,  f l ( x )  = - In  x - C 2 
0 v = 7pvrlcos((x- [~)1, 0 = rlcos(ot- l$)1, j ,k = 1,2,3 

--2L(k)+cyC) 3 3 2 2 "t" ~ j~)kC 44 / Pv pvUj c 2 
~,(v~ )= , ~ , o = ~  

-3 
A(  IX ) = c44 ( a, ,a22a33 + 2a,2ai3a ~ - a, , a ~  - a22a~s - a33a22 ) 
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AI (ot) = (alia33 + a22a33 _a]3 2 2 -a13) /c44,  A2(ot)=a33 / c44 

aij = --clln ~ - c u r t  2, al.~ =-(e3j + els)nln 3 

al2 = - (q3 + c~)nln3, a22 =-c44n~ - c33n23, nl = cosot 

a23 = - e l s n l  2 - e33 n2, a33 = £11n? + £33 n2,  n3 = sin O~ 

b?) 2 o,") -'- a22a33 -a23,  =a13a23 -a12a33, b~ I) =al2a23 -a13a22 

b2 (2) a2], b3 (2) b3 (3) -a22 - a  I la33-  . - - a l 2 a l 3 - a  Ila23, - - a  Ila22 

c~1)=c44a33, c(31)=-c,~al3, c~')=0, c(22)=c44a33 
c~2)=-c44a,3, c~3)=c44(all +a.z2), c(kJ'=c~ 1), b(kJ)=O~ k) 

pv2(O0=-B-jL+(-I)2 ~ --a2, v=l,2 

a;(ot) ¢o 
Bi(ot)= A(ot) V= c 

R,=P~, R2=P3, ~=Q, ~l=e2=-l, e3=l 
Note that the functions (2.1) are the solution of the problem of the harmonic excitation of a 

piezoceramic medium acted upon by mechanical forces Xk(Xl, X3, t) = 5(xl, x3) Re(Pve -i°t) (k = 1, 3) 
concentrated along the line xl = 0, --~ < x2 < oo, x3 = 0, or electric charges q(xl, x3, t) = ~(xl, x3) 
Re(Qe4~), where 6(Xl, x3) is the Dirac delta function. The superscript k = 1, 2, 3 in (2.1) indicates 
correspondence between the quantities U]I k) and ~(k) and the concentrated loads X1, X3 and q, 6 / is 
the Kronecker delta, C = 0.5772 is Euler's constant, si x, ci x are the integral signs and cosines [7], and 
(r, 13) are the polar coordinates of a point in the xlOx3 plane. 

It follows from an analysis of the system of differential equations (1.4) that two types of plane 
monochromatic waves, namely, quasi-longitudinal and quasi-transverse waves, can exist in a piezoceramic 
medium [6]. The velocities of these waves depend on their direction of propagation. Here the amplitudes 
of the displacements and the electric potential corresponding to a wave with wave number ~,v, are given 
by the expressions 

W O = ' t j  exp[-iYv(O)(x = cos 0 + x 3 sin O)] (v = 1, 2; j = 1, 2, 3) 

"t~(O) = ~ ,  c~(O)= 
c~ (o) p~ ( 0 ) ~  

(2.2) 

Here O is the angle between the normal to the wave front and the xx axis, and the functions pv(O) are 
defined in (2.1). The amplitude of the potential W~av in each of the acoustoelectric waves is related to 
the amplitudes of the displacements 14~1v and W~2~ as follows: 

(2.3) x I (ej5 + e31 ) s in  20 + x 2 (et5 cos  2 0 + e33 sin 2 O) 
I ;  3 = 

Ell cos 2 0 +E33 sin 2 0 

3. The overall acoustoelectric field in a piezoelectric medium with defects is made up of the fields due 
to radiated waves, and the fields scattered by the cavities. Using (2.1), we can represent the amplitudes 
of the displacements and of the electric potential, corresponding to the scattered field, in the form 

3 
Wj(z)= E I pk(~)g~(~,z)ds (3.1) 

k=l r 

gkj (4,z) - ~ v== ~!k)~F * 3 3  . dot 

O~ = 7Pvr*lcos(Ot-13*)l, O* = r*lcos(Ot-13*)l 
r*= l~ -z l ,  13* -- arg(~ - z), z = x ~ + / x  3, ~ r "  
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Herepk(~) are unknown densities, to be determined, and ds is an element of the arc of the contour F. 
The integral representations (3.1) possess the necessary completeness in relation to the boundary-value 
problem considered. 

Differentiating (3.1), we obtain 
3 

~tWj(z)= Y. j pk(;)G~)(~,z)ds,  /=1 ,3  (3.2) 
k=l F 

(k) (I) * 3 3 (I) , "~ d a  c~J)(~ ,z ) :  9,,2..3e' 7, ~ ~,,j,,v (o,,)+sjS~ota (o) j  A(a) 
- ' "  "44 0 v=l 

W(t)(O*v)=-.~gvntH(O*v)signcos(a-15*), f~(t)(o*) -- ni 
r*  e o s ( a  - 15") 

H(x)  = n--e~ + 1 
- -  + cos x six - sin x ci x 

2 x 

Taking the functions (3.2) and the material equations (1.2) into account, we can find expressions for 
the amplitudes of the stresses and the components of the induction and electric-field vectors at any 
point of the region z ~ F. When z ---> ~ e F, when calculating the quantity ~tWj(z), one needs to take 
into account the terms outside the integrals, which arise due to the singular nature of the kernels C_~.0(~, z) 
at the point z = ~. 

It can be shown that the singular terms occurring in the functions G~O(~, z), correspond to static loading 
of the piezoelectric medium. Using (2.1) we obtain, after reduction 

~kR~ ~ da ~l(W:k)-- WJ(~))= ~ v = l  i ~'(k)NII(I)gA' (3.3) o "-vj-* ~-V,A(a) 

q'.(°(Ov) = -Tp~nlh(Ov )signcos(a- 15), h(x) = H(x)- 1 / x 
where W(~.Gare the static values of the displacements and of the electric potential. Consequently, the 
function (3.3) vanishes when z = ~, i.e. is regular. 

A fairly lengthy procedure for the analytic evaluation of the integrals, corresponding to the static 
part of the derivatives of the fundamental solution (2.1), leads to the following result 

. . . .  s ( k )  e'kek i b~k)nlda 3w~,,,,tv,-.vj (3.4) 
atWJ(~) = - ~ o  A(a)cos(Ot-15) = Rk Re ~ Zv - Zvo 

_ 2 A~II) _(c44 + c3311v )(El I + E331J 2v ) -- (el5 + e33p2 )2 

Av02 ) = Pv[(C44 + q3)(e, ,  + e33112)+ (et5 + e31)(e,5 + e331.t 2)] 

AO) 2 2 v3 = Pv[(C44 + Cl3)(els + e3311v) - (el5 + e31)(c44 + c33P'v)] 
2 2 2 2 

Av ¢2) = -(Cll  + c~l'l'v )(Ell + 1~3311v ) -- 11v (el5 + e31 ) 
2 2 

A(2) = 112 (el5 + e31 )(c44 + cl 3 ) _ (el5 + e331.t v )(Cl I + c4411v ) tar3 

A(3) 2 2 2 A(k,) " v3 ~" (ell +CaAIJ'v)(C44 "t'C33Pv)--11v(C31 "t'C44) 2, "'v, = A(vk ) 

rely = 1, m3v =11v, Zv = xl +11vX3 , Zv0 =Xlo +11vX30 

where p~(Im ~ > 0, v = 1, 2, 3) are the roots of the algebraic equation 
ai~e + b~t4 + clx2 + d = O 

a=-c,c33E33(l+k23,), k23,= eA , k?,= e215 
C33E33 C44Ei I 

b = c44 (2q.ae33 - c33e H + 2e3=e33) - cl i c33e33 (I + k23) - c33 (el5 + e31 )2 + 

+2e33c13(et5 + e3t ) + c23e33 

c = c44 (2cl.~el i - e~l ) + c23eu + 2q  3els(els + e31)- c1~ (c44¢~3 + c~3eH + 2etse33), 

d = -ct ~c44e, ~ (1 + k25) 
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The constants ¢o~ are found from the three real systems of linear algebraic equations 

3 
Im Y. dv(])cotv = f , t ) ,  j = 1,2 ..... 6; k = 1,2,3 

V=! 

"~t' = -v~ta,, ,  ,,,2"~t~ = v~), ",,,3"~t~ - - r~  t ~ , -  '.'v.,+~"~t~ = _ ~ ) .  '*'vl 

f/lt)=5/~/2n, f/~)=O, i=1,2,3 
T(v t ) _ ~  a ( t )  ( t )  ( t)  - '-13"-"vt +(c33Av2 +e33Av3 )l'tv 

r(v t)  = ~.c,3y.".v3"° . a l l )  _ e33A~))PLv _ e31A~,l k) 

(3.5) 

Hence, using (3.3) and (3.4) the integral representations (3.2) can be written in the form 

3 
3tW/(z)= E ] Pt(~)/~O(~,Z) ds, l= 1,3 

k=l F 

3 00tvm/vA~ ) l~]~({,z) = Re 
v=l 7-v -- ~v 

et Z 7 
~ v = !  0 A(Ot) 

(3.6) 

Substituting the limiting values of the derivatives (3.6) asz ~ (-,0 ~ F into the mechanical and electrical 
boundary conditions, we arrive at a system of three singular integral equations of the second kind in 
the functions Pk(Q 

3 
lpt(~o)+ y. ~ pl(OMtt(~,~o)ds= Nt(~o), /=1,2,3 

k=l F 

= r ? ' ¢  = + r g ' n ;  Mit ~(~nT+ 13 3, M2t . 
b-~l) 3) ~ tr(I) 1.* -- -- !~33~013 )n3 , M3k ----'[el5( 012 + ~031) ~'ll"0k31"q +(~31~0/~ +e33~03)2 3) * 

(3.7) 

2 
Nt(;0)=Y.  NtCil(;o), n~=eosv0,  n ~ = s i n ¥  o 

j=l  

N~l~({o) = q3 1+ / n ~ j ,  c33(1 )n3X ~ 
£33Ci3 J 

~o=V({o) ;  { , { o e F = U F ,  n, r e= l ,2  ..... n; j = l , 2  

The right-hand sides of Eqs (3.7) Nt (i) ((,0) were found using expressions (2.2) and (2.3); they 
correspond to two types of loadings: a plane quasi-longitudinal wave propagating in a negative direction 
of the x3 axis (j = 1) and a plane quasi-transverse wave, radiated in the negative direction of the x~ axis 
(j = 2). The third integral equation (l = 3) in system (3.7) corresponds to electrical boundary condition 
(1.5). 
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4. To de t e rmine  the dynamic  stress concent ra t ion  in the p iezoceramic  m e d i u m  with cavities we will 
calculate the no rma l  stress co on the con tour  F. Bear ing  the integral  represen ta t ions  (3.6) in mind,  we  
obta in  

o o  = ReCroe-~), ~(~o) = ro + ~ t,k(~o)t,(~o)+ I PkC~)~*~C~,r,o) as 
k=l r" 

3 C~vn~ + n~)2  
t t  (~o) = - ~  Im ~ ¢okvy~ ) (4.1) 

= r , ? ' o , ; )  + - 

To = -  ct3 + e31e33 (n~)2 +c33(l+k~D(n~)2 ~ + 2c~(l+kls)nln3~ 2 
e33 

T h e  quant i t ies  ~ )  occurr ing here  were  def ined in (3.7). 

We will consider, as an example, a piezoelectric medium (PZT-4 ceramics [8]), weakened by a cavity of circular 
or square cross-section with the parametric equations 

Re~ = a(cosrl+ccos3rl), lm~ = a(sinr I-csin3rl) ,  11~ [0,2~] (4.2) 

Here c = 0 for a cavity of circular cross section and c = 0.14036 for a cavity of square cross-section. 
The functions pk(Q(k = 1, 2, 3) were calculated from (3.7) using (4.3) by the method of quadratures [9], and 

then, using (4.1), we determined the stress T0(~). For PZT-4 ceramics we have ~t k. 
Figure 2 illustrates the change in the quantity Z = [ T0/A J at the points I"1 = n (curve 1) and rl = 3n/2 (curves 2 

and 3) of the contour of a circular cavity as a function of the normalized wave number ya for a quasi-longitudinal 
wave (curves 1 and 3) or a quasi-transverse wave (curve 2). The dashed curves are drawn for values of the 
piezoelectric moduli e33 = e13 = 0 and e~5 = 0.1 C/m 2, which corresponds in practice to a piezoelectrically 
passive material ~for all eij= 0 system (3.5) is degenerate). In the first case of loading, the quantity A = I ~33J = 
"c2~/x/(c44c33(1 + k~33) ~ is the modulus of the amplitude of the stress ~33 in the quasi-longitudinal wave, and in the 
second case A = J ~331 = x2~'cu ~1(1 + k~5) is the modulus of the amplitude of the stress ~3  in the quasi-transverse 
wave. 

The graphs of the change in the value of Z at the points rl = 3n/2 and 11 = 157n/158 of the contour of the square 
cavity are shown in Fig. 3. Curves 1-3 correspond to those in Fig. 2. 

The distribution of the quantity Z on the contour of the square opening when quasi-longitudinal and quasi- 
transverse waves are radiated is shown in Fig. 4. The curve with number m corresponds to a value of the normalized 
wave number va = m. 

It follows from these results that, in dynamic excitation, a redistribution of the stress ~0 over the cavity surface 
occurs. The influence of the inertial effect manifests itself in an increase in ~0 over a certain range of variation of 
the angular frequency compared with its static analogue. The effect of the connectedness of the acoustoelectric 
fields, as can be seen from Fig. 2, may make a considerable contribution to the stress concentration, which is not 
observed in the case of plane deformation of a piezoelectric ceramic medium in a plane perpendicular to the 
direction of polarization of the material. 

/ ! I  r - .  
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1 ~ Ya 

/ 
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Fig. 2. Fig. 3. 
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